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Abstract

Free vibration of non-uniform beams, which possess non-homogeneous material density and elastic modulus along
their axis, are studied under various boundary conditions. Closed-form expressions for the fundamental natural fre-
quency are derived. It is shown that there is an infinite number of beams that share the same natural frequency.
Moreover, it is proved that some coefficients describing the density and elastic modulus functions can be deterministic
or random, yet, remarkably, in special circumstances, the fundamental natural frequencies turn out to be deterministic
quantities. Extensive numerical analysis is performed to substantiate this seemingly paradoxical finding by the Monte
Carlo method, Boobnov-Galerkin method and the finite-element method. © 2001 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

There are several articles that deal with the vibrations of beams that are non-uniform along their axes.
Usually, the variation is attributed to the cross-sectional area. Then, for specific analytic expressions of
such deterministic variations, exact solutions are given in terms of special functions. The first solution for
the natural frequency of a tapered beam, that of the wedge, was pioneered by Kirchhoff (1882). The so-
lution was given in terms of Bessel functions. Several other solutions of Kirchhoff’s type followed. The
appropriate bibliography of problems solved in terms of Bessel functions is given by Naguleswaran (1994).
The case where hypergeometric functions arise is discussed by Wang (1967). In some special cases, for
beams that are clamped at both ends, a transformation of the dependent variable is possible so that the
tapered beam shares a natural frequency of the uniform one (Abrate, 1995). There are fewer studies
that deal, in various approximate settings, with vibrations of beams with random non-homogeneities. For
example, Collins and Thomson (1969), Shinozuka and Astill (1972), and Manohar and Keane (1993)
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considered several random eigenvalue problems via analytical methods. Finite element method in stochastic
setting was applied, amongst others, by Hart and Collins (1970), Nakagari et al. (1987), and Zhu and Wu
(1991). For extensive bibliography devoted to vibrations of discrete and continuous structures with random
parameters one may refer the review by Ibrahim (1987) and its recent update by Manohar and Ibrahim
(1997).

Present study deals with beams which exhibit inhomogeneity both in material density and in elastic
modulus. These inhomogeneities are described in terms of polynomial functions. Simple closed-form ex-
pressions for both mode shapes and fundamental natural frequencies are uncovered for special class of
problems. Then the problem is considered in the probabilistic setting with attendant seemingly paradoxical
conclusion: beams with random properties may possess the deterministic fundamental natural frequencies.
Extensive numerical study is conducted to substantiate this finding.

2. Formulation of the problem

Consider a non-uniform beam of length L, with cross-sectional area A, moment of inertia /, that are
constant, and variable material density p(x) and modulus of elasticity E£(x). Beam’s vibrations are governed
by the Bernoulli-Euler equation:

. {E(x)]%xj’t)} o g (1)

where w(x, ¢) is the displacement, x, the axial coordinate, and ¢, the time.
We introduce non-dimensional coordinate £ = x/L, as well as consider harmonic vibration, so that the
displacement w(¢&, ¢) is represented as follows:

W(‘/:?t) = W(‘f)eiwt7 (2)
where W(¢) is the mode shape and w, the sought natural frequency. Thus, Eq. (1) becomes
d’ a*we
< [E(f) § )} CHA(EW(E) =0, k=l 3)
d¢ d¢
The material density and elastic modulus are represented as polynomial functions,
p(¢) = Zaifi, E(¢) = thf[a (4)
=0 =0

where m and n are positive integers. We restrict our consideration to the case n = m + 4, since the first term
in Eq. (1) involves four spatial derivatives. We are looking for that special class of problems in which the
mode shape W(¢&) is represented by the simplest polynomial functions which satisfy a given set of boundary
conditions.

3. Cantilever beam

The beam is clamped at ¢ = 0 and free at ¢ = 1. The boundary conditions read
ow (<)

(=0, =0 ag=0
(5)
;W) 9 GRS _
@Iz =0, 65{5(5)1 = ]_o at & = 1.

A polynomial function that satisfies the boundary conditions in Eq. (5) is given by
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W) =w (68 —48 +¢&). (6)

It coincides with the expression of the first comparison function in the set of polynomial functions intro-
duced by Duncan (1937) for studying beam vibration in the context of the Boobnov—Galerkin method; wy is
an indeterminate coefficient. We also note that the expression in parentheses is proportional to the static
displacement of the uniform cantilever under the constant loading.

We pose the following question: What should the coefficients @; and b; be so that the beam’s vibration
mode coincides with Eq. (6)?

By substituting the expressions for E(¢), p(¢) and W(¢&) into Eq. (3), we obtain

m+4 m+4 m+4

wi | i — DhE 7 (128 — 248 +12) + > 24b,E' +2) "ibE ! (242 - 24)
i=2 i=0 i=1
— kLYY aid (& - 48 +68) | =0. (7)
i=0

The latter expression can be re-written as follows, in a more convenient form:

m+3 m+4 m+2 m+4

—2421 i+ )b & +1zzz i— )b +122 i+2)(i+ Dbial +24> b
i=0

m+3 m+4 m+2 m+3 m+4

— 48 (i + )by + 48 ikl — 6KLD a2 + ALY "a; 3 — kLYY a; 4& = 0. (8)
i=0

i=1 i=2 i=3 i=4

Eq. (8) has to be satisfied for any &. It will be shown later that one has to distinguish two special sub-cases:
(a) m< 3 and (b) m > 3. It appears instructive to first treat the particular cases m = 0, 1, 2 and 3.

3.1. Cantilever with uniform mass density (m =0)

In this case, the expressions for E(¢) and p(&) read

p(&) =ay,  E(@E)=) b )
By substituting the latter expressions in Eq. (3), we obtain

_24Z”+ )byt & +122”—1 Vb +1221+1 (i + 2)bi 2 +24Zb5

- 482(1‘ + Db &+ 4821‘};,-5" — kL*ay (68 — 58 +2&%) = 0. (10)
=0 i=1
Eq. (10) has to be satisfied for any ¢. This requirement yields
24(bo + by) — 48b; = 0, (11)
72(by + b3) — 144b, = 0, (12)
144(by + by) — 288b3 — 6kL*ay = 0, (13)

240b5 — 480by + 4L kay = 0, (14)
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—kL*ay + 360b; = 0. (15)

The sole unknown in Egs. (11)—(15) is the natural frequency coefficient &, yet we have five equations. We
conclude that the parameters b; and «; have to satisfy some auxiliary conditions so that Egs. (11)-(15) are
compatible.

Two compatibility conditions are given by Egs. (11) and (12), leading to

by = 2by — by, (16)
by = 2b, — bs. (17)
From Egs. (13)—(15), three expressions for k can be found. These are listed below:

_ 144(by + by) — 288b5

1
6L4a0 ’ ( 8)
—240b3 + 480D,
= o ¢ T 1
k L44a0 ’ ( 9)
360
=22 b, 2
k= i bs (20)

For satisfying the compatibility requirement, all expressions for k& have to be equal to each other. We
consider the case when material density coefficients «; are specified. Then problem is reduced to determining
coefficients b, so that Eqs. (18)-(20) are compatible.

Since the function p(¢), of the material density, is given, so is the coefficient ay. Let us observe that if b, is
specified then the expression given in Eq. (20) is the final formula for the natural frequency coefficient k.
Then, Egs. (18)—(20) allow an evaluation of remaining parameters b;. Note that b, and @, have to have the
same sign since the natural frequency parameter kK must be positive. From Eq. (19), we obtain

by = —4b,. (21)
Eq. (18) leads to

b=~ 2 4 db, (22)

The b;s, where i = {0, 1,2, 3}, can be re-written as follows:

by = —4b,, (23)
by = 6by, (24)
by = 16by, (25)
by = 26b;. (26)

To sum up, if conditions (9) are satisfied, where b; are given by Eqgs. (23)-(26), then the fundamental mode
shape is expressed by Eq. (6). The fundamental natural frequency reads

I by
2 — _
o = 360A oLt (27)
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3.2. Cantilever with linearly varying density (m = 1)

In this case, the expressions for E(¢) and p(¢) read

p&) =as+aé,  E(&) =) b (28)

i=0

By substituting the latter expressions in Eq. (3), we obtain

4 5 3 5
=24 Ci(i+ Db & +12) i — DhE +12) (i + 1)(i + 2)binl + 24> b&!
i=1 i=2 i=0 i=0

- 4824:(1' + )b & + 482521'19,-5" — kL*(ag + a &) (687 — 58 +2¢&%) = 0. (29)
=0 i=1
Eq. (29) has to be satisfied for any &. This requirement yields

24(by + by) — 48b; = 0, (30)
72(by + b3) — 144b, = 0, (31)
144(by + by) — 288b3 — 6kL*ay = 0, (32)
240(bs + bs) — 480by + L*(4kay — 6kay) = 0, (33)
360b, — 720bs + L* (4kay — kay) = 0, (34)
—kL*a; + 504bs = 0. (35)

Coefficients b;, where i = {0,1,2,3,4}, can be evaluated so that the compatibility of Egs. (30)—(35) is
checked;

7610 — 18611

by =————b 36
! 5ay > (36)

2(11ay — 14ay)
b= V) 37
’ 5611 > ( )
p, = 20l +21a) (38)

5611

_ 2(5lay + 56ay)
b = Sa, bs, (39)
by = Mm. (40)

5611

We arrive at the following conclusion: if conditions (28) are satisfied, where b; are given by Egs. (36)-(40),
then the fundamental mode shape is expressed by Eq. (6), where the fundamental natural frequency reads
I bs

2 __
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3.3. Cantilever with parabolically varying density (m=2)

In this case, the expressions for E(£) and p(¢) read
&) = a0+ métmd,  E@) =Y be
By substituting the latter expressions into Eq. (3), we obtain

—24Z”+1 ,+16+122”_1b5+122 (i+2) z+zf+24be

—482 i+ )by & +4szzb¢ — kL (ap + a1 + ar&) (687 — 58 +28) =0

i=0 i=1

Eq. (43) has to be satisfied for any &. This requirement is equivalent to
24(by + by) — 48b; = 0,
72(by + bs) — 144b, = 0,
144(by + by) — 288b3 — 6kL*ay = 0,
240(bs + bs) — 480by + L* (dkay — 6ka,) = 0,
360(by + bg) — 720bs + L*(4ka, — kay — 6kay) = 0,
504bs — 1008b + L*(4kay — ka,) = 0,
—kL*a + 504bs = 0.

To satisfy the compatibility equations, b;, where i = {0,1,2,3,4,5}, have to be

2(2a; —
py = 22030,
3(12
53612 - 72(11 + 2861()
b4 = 65
15(12
4(3902 + 22611 — 2800)
b3 = 65
15612
259a, + 248a, + 168ay
bz = b67
15612
2(181ay + 204a; + 224ay)
b1 = bév
15612
(465a; + 568a; + 728ay)
b() = b().

15612
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Thus, if conditions (42) are satisfied, where b; are given by Egs. (51)—(56), then the fundamental mode shape
is expressed by Eq. (6), where the fundamental natural frequency reads

I b
26722 25
0 =672 (57)

3.4. Cantilever with material density represented as a cubic polynomial (m = 3)

In this case, the expressions for E(&) and p(¢) read
7

p(&) = ag+ a1 é + a8 + ax &, E(¢) = Zb,—ﬁi. (58)

By substituting the latter expressions in Eq. (3), we obtain

6 7 5 7
=24 Ci(i+ Db & +12) i = DhE +12) (i + 1)(i + 2)binl + 24 b&!
i=1 i=2 i=0 i=0

6 7
— 48 (i + )by & + 48 ik — kL' (ag + a1& + ar& + a38) (68 — 5&° +28%) = 0. (59)
=0 i=1
Eq. (59) has to be satisfied for any . This requirement yields
24(by + by) — 48b; = 0, (60)
72(by + b3) — 144b, = 0, (61)
144(b, + by) — 288b3 — 6kL*ay = 0, (62)
240 (b3 + bs) — 480by + L* (dkay — 6ka,) = 0, (63)
360(by + bg) — 720bs + L*(4ka; — kay — 6kay) = 0, (64)
504(bs + b7) — 1008bs + L*(4kas — ka; — 6kaz) = 0, (65)
672bs — 1344b; + L*(4kaz — kay) = 0, (66)
—kL*as + 864b; = 0. (67)
To satisfy the compatibility equations, b;, where i = {0,1,2,3,4,5,6}, have to be
96!2 — 22a3
bg =———b 68
¥ 7a3 " ( )
-1 4
b5 _ 3(7&3 0a2 + al) b77 (69)
7(13
2 1 -21 4
b4 _ 3 0613 + 95(12 6611 + 8 7N b77 (70)
35&3
4 264a, —
by = 535a; + 468a; + 264a; 336a0b (71)

35a; 7



3418 L Elishakoff, S. Candan | International Journal of Solids and Structures 38 (2001) 3411-3441

3(250a3 + 259a; + 248a; + 168ay)

b2 = 35a3 b77 (72)

p, — (965a; + 1086a; + 1225ay + 1334ay) , (73)
35&3

b, — 1180as + 1395a; + 1704a, + 2184ay, (74)

35a3

In summary, if conditions (58) are satisfied, where b, are given by Eqs. (68)—(74), then the fundamental
mode shape is expressed by Eq. (6), where the fundamental natural frequency reads

I b
2864 .
o =86 Aol (75)

3.5. Cantilever with material density represented as a higher order polynomial (m > 3)

Since Eq. (8) is valid for any &, we conclude

24(by + by) —48b, =0 fori =0, (76)
72(by + by) — 144by, =0 fori=1, (77)
144(b, + by) — 288by — GkL*ay =0 fori=2, (78)
240(bs + bs) — 480b, + L*(4kay — 6ka;) =0 for i = 3, (79)

(80)
12(m* 4 9m + 42)b, 43 — 24(m + &) (m + 5)bys4 + L*(dka,, — ka,,_) =0 fori=m+3, (81)
CkL*ay + 12(m* + Um + 30)by e = 0 fori =m + 4. (82)

The only unknown in Egs. (76)—(82) is the natural frequency coefficient k, yet we have m + 4 equations. We
conclude that the parameters b; and a; have to satisfy some auxiliary conditions in order Egs. (76)—(82) to
be compatible.

Two compatibility condition are given by Egs. (76) and (77), leading to

by = 2by — b, (83)
by = 2b, — bs. (84)

From the other equations, several expressions for k can be found. These are determined from Egs. (78)—
(82), respectively, and are listed below:
_ 144(by + by) — 288b3
a 6L4Clo ’

(85)
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_240(bs + bs) — 480b,

k 86
L4(6a1 —4610) ’ ( )
b 120+ 1) (i + 2) (b + biyn) — 24+ 1) (i + 2)bia (87)
a L*(aj—a + 6a,_ — 4a;_3) 7
o 1200+ m - 42)biys = 24(m -+ 4)(m + 5) b ()
- L*(a,_ 1 — 4a,) ’
2
i — 12(m* 4+ 11m + 30)b,14 ' (89)

L*a,,

For meeting the compatibility requirement, all expressions for k have to be equal to each other. We
consider the case when material density coefficients @; are specified. Then problem is reduced to determining
coefficients b; so that Eqgs. (85)—(89) are compatible.

Let us assume that the function p(¢), of the material density, and hence all ¢; (i = 0, 1,...,m) are given.
Let us observe that if 5,4 is specified then the expression given in Eq. (89) is the final formula for the
natural frequency coefficient k. Then, Eqs. (85)—(89) allow an evaluation of remaining parameters b;,. Note
that b,,.4 and a,, have to have the same sign since the natural frequency parameter & must be positive.

From Eq. (88), we obtain

bm+4
ap(m? + 9m + 42

Eq. (87) leads to

bm+3 =

] [(m* + 11m + 30)a,_y — 2(m* + 13m + 40)a,,|. (90)

1
bi =
(l + 1)(461,',2 — 661,',] — (1,’,3)
+ 204+ 3)a; g — (7i — 23)a; 3 + 8(i + 4)a; 2 + 6(i + 1)a;_1]bisa
+[=(G+3)ai_a+40G+3)ai3 + (2i — 10)a,5]biy3 }, (91)

{[ — (l + 3)61,'_4 + 2(1 + 5)61,'_3 + (21 — 10)611'_2 — 12(1 + l)ai_l]bi+l

where i takes on values {4,5,...,m + 2}.
Eq. (86) yields

(—461() + 12(12 -+ al)b4 + (11610 — 6a2 — 14a1)b5 + (9(11 — 6a0)b6

by = 92
} ap + 6a, — 4a, (92)

From Eq. (85), we deduce
b2 _ (6a1 + ao)b3 — (3611 + 8(10)[)4 — 5a0b5 . (93)

3&1 — 2&10

We conclude that for specified coefficients ay, .. ., a,, and b, 4, Egs. (83), (84) and (90)—(93) result in the set
of coefficients for the elastic modulus such that the beam has a mode shape given in Eq. (6). It is remarkable
that if a; = a, then the coefficients b; do not depend on the parameter a.

To sum up, if p(¢) and E(¢) vary as in Eq. (4) with b; computed via Egs. (83), (84) and (90)-(93), the
fundamental mode shape of a beam is given by Eq. (6) and the fundamental natural frequency squared
reads
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2 Zﬂ (m* + 11m + 30) b;";“ : (94)
As we have established, in order for the closed-form solution to be obtainable, it is sufficient that (1) all a;
coefficients and (2) the coefficient b,,,4 be specified. These requirements are not necessary: one can assume
that all a; coefficients are given and instead of the coefficient b,.4 any other b; coefficient (j # m + 4) is
specified. If this is the case, then from Eq. (87) one expresses b, via b; and k; substitution into subsequent
equations allows us to express b2, b3, b,iq via b;; analogously, substitution of b; into Egs. (86)—(88)
yields sought exact solutions.

Although the natural frequency expressions for uniform density in Eq. (27), for linearly varying density
in Eq. (41), for parabolically varying density in Eq. (57) and cubic varying density in Eq. (75), are derived
separately from the case m > 3, all these equations follow from Eq. (94) by substituting appropriate values
for m. Hence, Eq. (94) is the final formula for any integer value m.

4. Beam that is clamped at both ends

The beam is clamped at £ = 0 and & = 1. The boundary conditions are

we =0, PO o aeson (95)
d¢
A simplest polynomial function that satisfies boundary conditions in Eq. (95) is given by
W(E) =w (& -28+&. (96)
By substituting the expressions for E(¢), p(&), W(&) in Eq. (3), we obtain
m+4 ) m+4 m—+4
wi | Y i = DhiE? (1288 — 128 +2) + Y 24b,E +2) ik (248 — 12)
i=2 i=0 i=1
— kLY ad (& -28 + &) | =0. (97)

The latter expression can be cast in the following form:

m+3 m+4 m+2 m+4
122 (i + Dby & +1zzl (i — Db& +2Z (i +2)(i + )by & +24Zb5
m+3 ) m+4 ) m+2 ) m+3 ) m+4 )
- 242(1‘ + )b &+ 482ib,-£’ - kL“Za,-,zg” + 2kL4Za,-,35l - kL4Zal-,4f’ =0. (98)
i=0 i=1 i=2 i=3 i—4
Since Eq. (98) has to be satisfied for any £, we arrive at the following relations:
24by 4+ 4b, —24b; =0 for i =0, (99)
72by + 12b3 — 72b, =0 for i =1, (100)
144b, + 24by — 144b; — kL*ay =0 for i =2, (101)

24065 + 40bs — 240b, + L*(2kag — kay) =0 for i =3, (102)
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12(1 + 1)(1 + 2)bl + 2(1 + 1)(1 + 2)bi+2 — 12(1 + 1)(1 + 2)bi+1 + L4(2ka,-_3 — kal'_2 — ka,-_4) =0

(103)

for4<i<m+2,
12(m + 4)(m + 5)byis — 12(m + &) (m + 5)byia + L*(2ka,, — ka, 1) =0 for i=m+3, (104)
—kL*a,, +12(m* + 11m + 30)b,.4 =0 fori=m+4. (105)

It should be borne in mind that Egs. (99)—(105) are valid only if m > 3. For cases that satisfy the inequality
m < 4, the reader is referred to Appendix A. Note also that the Egs. (99)—(105) have a recursive form, as do
Egs. (76)—(82) for the cantilever.

Two compatibility conditions are immediately detected for Egs. (99) and (100), resulting in

by = by — by/6, (106)

by = by — b3 /6. (107)

From other equations, several expressions for k can be found. These are determined from Egs. (101)—(105)
respectively. The alternative analytical formulas for k read

L 144(b, — by) — 24b,

g ’ (108)
240(b3 - b4) - 40b5
‘e 109
L4<dl — 2610) ( )
= 1204 D+ 2)(by = biy) = 20+ 1)(i + 2)biso (110)
a LAa; 4+ aiy —2a;_3) 7
12(m 4 4)(m + 5) (b3 — buia)
‘e 111
L4(am,1 - zam) ’ ( )
2
i 120m* + 1m 4 30)by 4 (112)

L*a,,

Eqgs. (108)—(112) then allow an evaluation of remaining parameters b;. It is noteworthy that b,,,4 and a,,
have to have the same sign due to the positivity of k. From Eq. (111), we get

bm+4 2 2
bz = 11 1 — 1 40)a,,|. 11
43 am(m+4)(m+5)[(m + 11m +30)a,_1 — (m* + 13m + 40)a,| (113)
Eq. (110) yields
1
b,‘ = {[ — 6(1 + 3)al‘,4 —+ 6(1 —+ 5)(1[,3 + 6(1 — 1)(1[,2 — 6(1 -+ l)al‘,]]bH,]

6(1 + 1)(261,‘,2 —da;_1 — a,«,3)
+[6(i+3)a; 4 — (37i+ 13)a; 3 +4(2i + 5)a;» — (i + Da;_1]bisa
+ (i +3)ai_a — 2(i + 3)a;—3 + (i + 3)ai_2]biss}, (114)
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where i belongs to the set {4,5,...,m+ 2}. Eq. (109) leads to
6(4(10 —+a; — 2612)1)4 — (38(10 — 2612 — 22611)1)5 — 3(2610 — {ll)b6

= 115

b3 12(2611 — dy — (12) ( )
From Eq. (108), we obtain

b2 _ (18611 — 6610)[73 + (3(11 — 36a0)b4 - Saobs . (116)

18(611 - 2(1())

Therefore, for specified coefficients ag, ay, ..., a, and b, 4, Egs. (106), (107) and (113)—(116) lead to the set
coeflicients in elastic modulus such that the beam possesses mode shape given in Eq. (96). In perfect analysis
with the cantilever, if a; = a, then coefficients b; do not depend on the parameter a. We conclude that, if p(&)
and E(¢) vary as in Eq. (4), with attendant b, computed via Egs. (106), (107) and (113)—(116), the funda-
mental mode shape of the beam is governed by Eq. (96), and the fundamental natural frequency squared
reads

1271 b
2 m+4
= s (" 11m +30) 22 (117)

5. Beam clamped at one end and simply supported at the other

Consider now the beam that is clamped at ¢ = 0 and simply supported at ¢ = 1. The boundary con-
ditions are

wey =0, P w0
de (118)
2
W(E) =0, E1d§’i§5)=o at &= 1.
<

A simplest polynomial function that satisfies boundary conditions in Eq. (118), and does not have a nodal
point in the interval (0,1) is given by

W) =w (38 - 58 +2&). (119)
By substituting the expressions for E(¢), p(&), W(&) in Eq. (3), we obtain

m+4 m+4 m-+4

Wi Zl i— 1)bi& (2487 =308+ 6) + Y _48h,& +2) ibiE (482 — 30)
i=0 i=1

- kL‘*Za,.g"(zg“ —-58438)| =o0. (120)

Eq. (120) can be re-written as follows:

m+3 m+4 m+2 m+4

fsoz (i+1) ,+1§+24Z l71b5+6zl+2 V(i + 1)biya +482b5

m+3 m+4 m+2 m+3 m+4

=60 (i + 1)bit& + 96 ibE — kLYY “ar o + SKLYD a5 — 2kL*Y "a; 4& = 0. (121)
i=0 i=1 i=2 i=3 i=4

Since Eq. (121) has to be satisfied for any . We conclude that
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48by — 60b; + 12b, =0 for i =0, (122)
144b, — 180b, +36b; =0 fori=1, (123)
288b;y — 360b3 + 72by — 3kL*ag =0 fori =2, (124)
480b; — 600b, + 120bs + L*(Skay — 3ka;) =0 fori=13, (125)

24(i + 1) (i + 2)b; — 30(i + 1) (i +2)biyy + 6(i + 1)(i + 2)b; 2 + L*(5ka;_3 — 3ka;_» — 2ka;_4) = 0
ford<i<m+2,

(126)
24(m + 4)(m + S)buys — 30(m + 4)(m + S)bya + L*(Ska — 2kay 1) =0 fori=m+3, (127)
—kL*a,, +12(m> + 11m + 30)b,.s =0 for i = m+ 4. (128)

It should be borne in mind that Eqgs. (122)—(128) are valid only if m > 3. For cases that satisfy the inequality
m < 3, the reader is referred to Appendix B. Note also that the Eqs. (122)—(128) have a recursive form.
Two compatibility conditions are given by Egs. (122) and (123), with

5h—bs

bo 1 , (129)

b1:5b24_b3. (130)

From the other equations, several expressions for k can be found. These are determined from Egs. (124)-
(128) respectively, are listed below:

- 96b, — 12055 + 24b,4

Tiae : (131)
48005 — 60064 + 12055
= 132
k L4(3a1 — Sa()) ’ ( 3 )
_ 6(i+1)(i +2)(4b; — Sbiyy + biys)

k= L4(2a,-,4 + 3(1,’,2 - 5&[,3) ’ (133)

- 6(m + 4) (m + 5)<4bm+3 — Sbm+4)
k= L*(2a,_1 — Sa,) ’ (134)

2

b 12(m* + 11m—|—30)bm+4. (135)

L*a,,

Then, Eqgs. (131)—(135) allow an evaluation of remaining parameters b,. Note that b,,,4 and a,, have to have
the same sign due to the positivity of k. From Eq. (134), we obtain



3424 L Elishakoff, S. Candan | International Journal of Solids and Structures 38 (2001) 3411-3441

- bm+4
buis = g 2y (40 + €)= 5(m 4 8)a). (136)
Eq. (133) yields
b — ! (] = 80+ 3)as + 100 + 5)ars + (13 — 11)a,

" 4>+ D)(5ar, — 3a;y — 2a;_3)
— 153 + D)a;-1])bip + [10( + 3)ai—a — (23i + 73)ai—3 + 10(i + 4)a;—» + 3(i + 1)a;_1]bis2
+[—2(i+3)a;a+ 56+ 3)ai s — 3(i + 3)a;i2)biss}, (137)
where i belongs to the set {4,5,...,m+ 2}. Eq. (132) results in
(40ayg — 30a, + 14a,)bs + (—71ay + 6ay + 35a1)bs + (—9a; + 15a0)bs

by = 138
? 8(5a1 — 3a» — 2ay) (138)

From Eq. (131), we obtain
b2 _ 5(501 — ao)b3 — (3a1 + 2an)b4 + 5a0b5 ) (139)

4(3611 — 561())

Thus, for specified coefficients ag, a1, ..., a, and b, 4, Eqs. (129), (130) and (134)—(139) lead to the set of
coefficients in elastic modulus such that the beam possesses mode shape given in Eq. (119). Note that if
a; =a, then coefficients b; do not depend on the parameter a.

The results can be summarized as follows: if p(¢) and E(&) vary as in Eq. (4) with b; computed via Egs.
(129), (130) and (134)—(139), the fundamental mode shape of a beam is given by Eq. (119), and the fun-
damental natural frequency squared reads

127
o’ = Vi (m* + 11m + 30) b;”*“ : (140)

6. Random beams with deterministic frequencies

As is seen in Egs. (94), (117) and (140), the fundamental natural frequency depends only upon terminal
coefficients a,, and b,,.4. If either of these coefficients is random, so is the natural frequency. In latter case
one can pose a problem of the reliability evaluation, the reliability being defined as the probability that the
natural frequency does not exceed any pre-selected value. Such an analysis, for the beams that were simply
supported at their ends was conducted by Candan and Elishakoff (2000).

Yet, Egs. (94), (117) and (140) for beams with three different boundary conditions lead to a remarkable
conclusion: If the material density coefficients ag,ay,...,a, 1, and the elastic modulus coefficients
by, by, ...,b,3 are random, but the quantities a, and b,.4 are deterministic, the natural frequency is a
deterministic variable too. Thus, although beam is random, its fundamental frequency is deterministic. The
present writers do not know of any other study that reports an analogous occurrence. The closest one is the
study by Fraser and Budiansky (1969) which dealt with buckling of elastic beams on non-linear elastic
foundation; the beam possessed with random initial imperfection — deviation from the straight line — with
given autocorrelation function. The beams were treated as having infinite length and the initial imperfec-
tions constituted ergodic random field. Fraser and Budiansky (1969) used approximate technique which
resulted in deterministic buckling loads. The buckling load was defined as a maximum axial load the beam
could support. Several other studies followed (see bibliography of Amazigo, 1976) which utilized different
approximate analyses. Amazigo (1976) ascribed this seemingly paradoxical behavior to the property of
ergodicity that was postulated for the random initial imperfection.
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Elishakoff (1979) re-examined the Fraser-Budiansky problem, for finite beams on the non-linear elastic
foundations. Monte Carlo method was utilized in conjunction with developing a special procedure for
solving a non-linear boundary-value problem for each realization of the random beam. In finite beams, the
buckling loads did not turn out to be deterministic. Yet, with the increase of the length, the coefficient of
variation of the buckling load was showed to be a decreasing function.

How can one detect that a complex structure may possess deterministic eigenvalues? Such structures
obviously are analyzed by approximate analytical and/or numerical techniques. In order to answer this
question, we simulate the realistic situation and apply the Monte Carlo method to check the validity of the
main conclusion of this study, namely, that random beams may have deterministic frequencies.

The particular case considered hereinafter is m = 2. Coeflicients ay and a; were taken to be exponentially
distributed independent random variables. One thousand and eighty nine realizations of beams were
simulated. For each realization of coefficients ay and «; the appropriate coefficients by, ..., bs were eval-
uated. For simplicity the coefficients a,, = a, and b,,,4 = b were fixed at unity. For each realization of the
beam the finite element method was applied. For one of the simulated beams, with material density co-
efficients are ay = 0.557602, a; = 0.387297, a, = 1. The associated elastic modulus coefficients are given in
the Tables 3-6, depending on the boundary condition. The convergence of the finite-element method is
illustrated in Table 1 with exact solution for the natural frequency coefficient being k& = 672. The per-
centagewise errors from the exact solution is listed in Table 2. For the subsequent calculations, the number
of elements was taken to equal four, with maximum error, that for the clamped—clamped beam, being only
0.41%. This is in agreement with the observation by Gupta and Rao (1978) concluding that “the finite-
element procedure developed for the eigenvalue analysis of doubly tapered and twisted Timoshenko beams
has been found to give reasonably accurate results even with four finite elements.”” Sample calculations for
ten realizations of the random beam are listed in Tables 3-6 for various boundary conditions. For the case
of the beams simply supported at both ends, Table 4 also lists the results obtainable from the single-term
Boobnov—Galerkin method with sinusoidal comparison function sin né. It can be observed from Table 3,
the sample frequencies are concentrated around the exact solution £ = 672 none exceeding the value 673.
The same occurs for the clamped—free beams (Table 4). For clamped-simply supported beams none of the
random frequencies in Table 5 exceeds 674, whereas for clamped-clamped beam all frequencies in Table 6
are below 675.

Results of the Monte Carlo simulation for 1089 sample beams is given in Table 7. At this size of the
sample, according to Massey (1951), at the level of significance of 0.01 the maximum absolute difference
between exact and empirical reliabilities is smaller than 1.63/1/1089 = 0.049. It lists mean values, standard

Table 1

Convergence of the natural frequency squared for differents boundary conditions*
Number of elements Simply supported Clamped supported Clamped-—clamped Clamped-free
1 791.789673 1146.29273 696.96113
2 678.667018 691.102962 717.006005 673.551345
3 673.321172 675.750735 680.733099 672.307085
4 672.418974 673.188072 674.761629 672.097261
5 672.171821 672.487131 673.131839 672.039859
6 672.082919 672.235081 672.546128 672.019228
7 672.044777 672.126948 672.294903 672.01038
8 672.026255 672.074438 672.172916 672.006086
9 672.016394 672.046481 672.107973 672.0038
10 672.010758 672.030501 672.070852 672.002493

% a[0] = 0.557602, a[1] = 0.387297, and a[2] = 1.
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Table 2

Percentagewise error
Number of elements Simply supported Clamped supported Clamped-clamped Clamped-free
1 17.8258442 70.5792753 3.714453869
2 0.992115774 2.842702679 6.697322173 0.230854911
3 0.196602976 0.558145089 1.299568304 0.045697173
4 0.062347321 0.176796429 0.410956696 0.014473363
5 0.025568601 0.072489732 0.168428423 0.005931399
6 0.012339137 0.034982292 0.081269048 0.00286131
7 0.006663244 0.018891071 0.043884375 0.001544643
8 0.003906994 0.011077083 0.025731548 0.000905655
9 0.002439583 0.006916815 0.016067411 0.000565476
10 0.001600893 0.004538839 0.010543452 0.000370982

deviation and the coefficient of variation for the natural frequencies. It is seen for all four sets of boundary
conditions, the standard deviation is much smaller than the mean natural frequency. Resulting coefficients
of variation all are less than 107>, Extreme smallness of the coefficient of variation supports our theoretical
finding that the natural frequency constitutes a deterministic quantity.

Likewise, it appears that if the results of the Monte Carlo simulation of a complex structure exhibit small
coefficients of variation for the eigenvalues irrespective of the moderate a large coefficients of variation of
the input stochastic quantities, one is facing the phenomenon uncovered in this study, namely the random
structures possessing the deterministic eigenvalues.

The difference with the paper by Fraser and Budiansky (1969) lies in the fact that the determinis-
tic property of the buckling loads was possibly due to the ergodicity of the input random fields (Amazigo,
1976) expanding from minus infinity to plus infinity, combined with approximate analysis. Here, we do
not use ergodicity assumption, the beams have finite length and the results are obtained in the closed
form.

7. Conclusions

For the three sets of boundary conditions the closed-form solutions have been derived for the mode
shapes and natural frequencies of non-homogeneous beams. Following conclusions have been reached:

(1) Non-homogeneous beams may possess the natural mode that is coincident with the static deflection
of the associated uniform beam under uniformly distributed load.

(2) The fundamental frequencies in all three cases coincide with each other, as the comparison of Egs.
(94), (117) and (140) reveals. The remaining case of the inhomogeneous beam that is simply-supported at its
both ends was studied by Candan and Elishakoff (2000). There too, the beam turned out to possess the
fundamental frequency given in Egs. (94), (117) and (140).

(3) Although the expressions for fundamental frequencies of inhomogeneous beams with four different
boundary conditions coalesce, the beam’s characteristics in each case are different. Namely, although they
share the same material density variation as in Eq. (4), the b; coefficients in the elastic modulus variation
differ. This leads to the interesting conclusion that the beams with different elastic modulus variation may
have the same natural frequency, although the beams are under differing boundary conditions. This con-
clusion may at first glance appear to be counterintuitive. Indeed, if one anticipates that the fundamental
frequency of the clamped—clamped beam must be greater than its counterpart for the beam that is simply
supported at its both ends. Yet, it must be borne in mind that in the cases in our consideration the beams’
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Table 3
Sample calculations for natural frequencies of simply supported beams

Coefficients a[j]

Coefficients 5[]

k: Natural frequency coefficient

Boobnov-Galerkin FEM
method

al0] = 0.557602 b[0] = 5.133779, b[1] = 5.133779
a[l] = 0.387297 b[2] = —0.070508, b[3] = —1.87789 672.907049 672.418974
a[2] = 1.000000 bl4] = —1.555322, b[5] = —1.150270

b[6] = 1.000000
al0] = 0.421035 b[0] = 4.948464, b[1] = 4.948464
a[l] = 0.642941 b[2] = 1.018801, »[3] = —1.981591 672.907092 672.418932
a[2] = 1.000000 b[4] = —2.423793, b[5] = —0.809412

b[6] = 1.000000
al0] = 0.817484 b0] = 8.824267, b[1] = 8.824267
a[l] = 1.373393 b[2] = 1.194419, b[3] = —5.214750 672.904906 672.418277
a[2] = 1.000000 bl4] = —3.436841, b[5] = 0.164524

b[6] = 1.000000
a0] = 0.032587 b|0] = 4.225417, b[1] = 4.225417
a[l] = 1.283644 b[2] = 3.921267, b[3] = —2.069073 672.907457 672.418818
a[2] = 1.000000 bl4] = —4.686583, b[5] = 0.044859

b[6] = 1.000000
al0] = 0.927113 b[0] = 9.427710, b[1] = 9.427710
a[l] = 1.368769 b[2] = 0.774654, b[3] = —5.612935 672.90474 672.418238
a[2] = 1.000000 bl4] = —3.221101, b[5] = 0.158359

b[6] = 1.000000
al0] = 0.300851 b[0] = 3.659425, b[1] = 3.659425
a[l] = 0.371173 b[2] = 0.851482, b[3] = —0.880659 672.9088 672.419444
al2] = 1.000000 b[4] = —1.995894, b[5] = —1.171769

b[6] = 1.000000
al0] = 1.595434 b[0] = 10.158333, p[1] = 10.158333
a[l] = 0.039957 b[2] = —4.732383, b[3] = —4.918851 672.904734 672.41833
a[2] = 1.000000 b[4] = 1.215579, b[5] = —1.613390

b[6] = 1.000000
al0] = 0.092588 b[0] = 8.976387, b[1] = 8.976387
a[l] = 3.231425 b[2] = 8.112237, b[3] = —6.967747 672.904605 672.417972
a[2] = 1.000000 bl4] = —9.249257, b[5] = 2.641900

b[6] = 1.000000
al0] = 1.676221 b[0] = 11.890765, b[1] = 11.890765
a[l] = 0.604673 b[2] = —3.753968, b[3] = —6.575775 672.904289 672.418169
a[2] = 1.000000 b[4] = 0.011065, b[5] = —0.860436

b[6] = 1.000000
al0] = 1.032913 b[0] = 12.660406, b[1] = 12.660406
a[l] = 2.533571 b[2] = 3.019887, b[3] = —8.803445 672.904 672.417973
a[2] = 1.000000 bl4] = —5.819134, b[5] = 1.711428

| =

b[6] = 1.000000

characteristics are different: The clamped-clamped beam and the simply supported beam have different
expressions for the elastic modulus. Also, as seen from Tables 4-6, the natural frequency of the beams
under different boundary conditions are fixed to be equal to each other by making @, = 1 and bs = 1 where
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Table 4
Sample calculations for natural frequencies of clamped-free beams

Coefficients a[j]

Coefficients b[j]

Natural frequency coefficient k
by the FEM

al0] = 0.557602 b[0] = 72.727949, b[1] = 51.321537
all] = 0.387297 b[2] = 29.915125, b[3] = 8.508713 672.097261
a[2] = 1.000000 b[4] = 2.715164, b[5] = —2.816937

b[6] = 1.000000
al0] = 0.421035 b[0] = 75.780285, b[1] = 54.196254
all] = 0.642941 b[2] = 32.612222, b[3] = 11.028191 672.097963
a[2] = 1.000000 b[4] = 1.233148, b[3] = —2.476078

b[6] = 1.000000
al0] = 0.817484 b[0] = 122.681037, b[1] = 85.905145
all] = 1.373393 b[2] = 49.129253, b[3] = 12.353362 672.096366
a[2] = 1.000000 b[4] = —1.532985, b[5] = —1.502142

b[6] = 1.000000
al0] = 0.032587 b[0] = 81.188912, b[1] = 60.021739
all] = 1.283644 b[2] = 38.854566, b[3] = 17.687394 672.099769
a[2] = 1.000000 b[4] = —2.567330, b[5] = —1.621808

b[6] = 1.000000
al0] = 0.927113 b[0] = 127.826609, b[1] = 89.053628
a[l] = 1.368769 b[2] = 50.280647, b[3] = 11.507667 672.096056
a[2] = 1.000000 b[4] = —1.306147, b[5] = —1.508308

b[6] = 1.000000
al0] = 0.300851 b[0] = 59.656390, b[1] = 43.214658
all] = 0371173 b[2] = 26.772926, b[3] = 10.331195 672.098978
af2] = 1.000000 b[4] = 2.313291, b[3] = —2.838436

b[6] = 1.000000
al0] = 1.595434 b[0] = 109.944777, b[1] = 72.870466
all] = 0.039957 b[2] = 35.796155, b[3] = —1.278156 672.093444
af2] = 1.000000 b[4] = 6.319681, b[5] = —3.280057

b[6] = 1.000000
al0] = 0.092588 b[0] = 157.856878, b[1] = 114.793376
all] = 3.231425 b[2] = 71.729875, b[3] = 28.666374 672.098338
af2] = 1.000000 b[4] = —11.804677, b[5] = 0.975233

b[6] = 1.000000
al0] = 1.676221 b[0] = 135.249566, b[1] = 90.643587
all] = 0.604673 b[2] = 46.037608, b[3] = 1.431629 672.093899
a[2] = 1.000000 b[4] = 3.759849, b[3] = —2.527103

b[6] = 1.000000
al0] = 1.032913 b[0] = 177.068593, b[1] = 123.896129
all] = 2.533571 b[2] = 70.723666, b[3] = 17.551202 672.096116
a[2] = 1.000000 b[4] = —6.699704, b[S] = 0.044762

| =

b[6] = 1.000000

> = 672Ibs/AasL*. Tt is obvious that other coefficients ag, ai, bo, b1, by, b3, by and bs are going to be
different for each boundary condition. This circumstance will result in getting different elastic modulus

variations for the inhomogeneous beams under different boundary conditions.
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Table 5
Sample calculations for natural frequencies of clamped supported beams

Coefficients a[j]

Coefficients b[ ]

Natural frequency coefficient k&
by the FEM

al0] = 0.557602 b[0] = 2.386304, b[1] = 2.172488
all] = 0.387297 b[2] = 1.317223, b[3] = —2.103834 673.188072
a[2] = 1.000000 b[4] = —0.175201, b[5] = —1.566937

b[6] = 1.000000
al0] = 0.421035 b[0] = 2.352934, b[1] = 2.172475
all] = 0.642941 b[2] = 1450641, b[3] = —1.436697 673.190547
a[2] = 1.000000 b[4] = —1.197058, b[5] = —1.226078

b[6] = 1.000000
al0] = 0.817484 b[0] = 4.127546, b[1] = 3.778540
all] = 1373393 b[2] = 2.382518, b[3] = —3.201570 673.18739
a[2] = 1.000000 b[4] = —2.648377, b[5] = —0.252142

b[6] = 1.000000
al0] = 0.032587 b[0] = 2.159529, b[1] = 2.078161
all] = 1.283644 b[2] = 1.752691, b[3] = 0.450809 673.197488
a[2] = 1.000000 b[4] = —3.844270, b[5] = —0.371808

b[6] = 1.000000
al0] = 0.927113 b[0] = 4.382875, b[1] = 3.997323
all] = 1368769 b[2] = 2.455116, b[3] = —3.713713 673.186588
a[2] = 1.000000 b[4] = —2.429862, b[5] = —0.258308

b[6] = 1.000000
al0] = 0.300851 b[0] = 1.757614, b[1] = 1.630702
all] = 0.371173 b[2] = 1.123053, b[3] = —0.907543 673.192617
a[2] = 1.000000 b[4] = —0.606097, b[5] = —1.588436

b[6] = 1.000000
al0] = 1.595434 b[0] = 4.457584, b[1] = 3.912576
a[l] = 0.039957 b[2] = 1.732547, b[3] = —6.987571 673.179294
a[2] = 1.000000 b[4] = 2.804104, b[3] = —2.030057

b[6] = 1.000000
al0] = 0.092588 b[0] = 4.521305, b[1] = 4.324959
all] = 3.231425 b[2] = 3.539577, b[3] = 0.398050 673.194604
a[2] = 1.000000 b[4] = —9.575612, b[5] = 2.225233

b[6] = 1.000000
al0] = 1.676221 b[0] = 5.293016, b[1] = 4.693411
all] = 0.604673 b[2] = 2.294989, b[3] = —7.298696 673.180924
af2] = 1.000000 b[4] = 1.260761, b[5] = —1.277103

b[6] = 1.000000
al0] = 1.032913 b[0] = 5.961455, b[1] = 5.483693
all] = 2.533571 b[2] = 3.572644, b[3] = —4.071551 673.187544
a[2] = 1.000000 b[4] = —5.726776, b[S] = 1.294762

b[6] = 1.000000
al0] = 3.017028 b[0] = 7.971769, b[1] = 6.944167
all] = 0.158394 b[2] = 2.833762, b[3] = —13.607860 673.176665
af2] = 1.000000 b[4] = 5.102438, b[3] = —1.872142

]

b[6] = 1.000000
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Table 6
Sample calculations for natural frequencies of clamped-clamped beams

Coefficients al ]

Coefficients b[]

Natural frequency coefficient k
by the FEM

al0] = 0.557602 b[0] = 1.013858, b[1] = 1.159905
all] = 0.387297 b[2] = 0.876280, b[3] = —1.701751 674.761629
af2] = 1.000000 b[4] = 0.144678, b[3] = —1.150270

b[6] = 1.000000
al0] = 0.421035 b[0] = 0.973584, b[1] = 1.130086
all] = 0.642941 b[2] = 0.939010, b[3] = —1.146453 67476113
a[2] = 1.000000 b[4] = —0.723793, b[5] = —0.809412

b[6] = 1.000000
al0] = 0.817484 b[0] = 1.755885, b[1] = 2.023840
all] = 1.373393 b[2] = 1.607728, b[3] = —2.496669 674.764592
a[2] = 1.000000 b[4] = —1.736841, b[5] = 0.164524

b[6] = 1.000000
al0] = 0.032587 b[0] = 0.819969, b[1] = 0.997884
all] = 1.283644 b[2] = 1.067493, b[3] = 0.417655 674.758823
a[2] = 1.000000 b[4] = —2.986583, b[S] = 0.044859

b[6] = 1.000000
al0] = 0.927113 b[0] = 1.878854, b[1] = 2.157733
all] = 1.368769 b[2] = 1.673270, b[3] = —2.906774 674.764933
a[2] = 1.000000 b[4] = —1.521101, b[5] = 0.158359

b[6] = 1.000000
al0] = 0.300851 b[0] = 0.713686, b[1] = 0.831554
all] = 0.371173 b[2] = 0.707207, b[3] = —0.746080 674.758412
a[2] = 1.000000 b[4] = —0.295894, b[5] = —1.171769

b[6] = 1.000000
al0] = 1.595434 b[0] = 2.040809, B[1] = 2.261035
all] = 0.039957 b[2] = 1.321356, b[3] = —5.638072 674.765655
a[2] = 1.000000 b[4] = 2.915579, b[3] = —1.613390

b[6] = 1.000000
al0] = 0.092588 b[0] = 1.768522, b[1] = 2.140223
all] = 3.231425 b[2] = 2.230211, b[3] = 0.539927 674.763433
a[2] = 1.000000 b[4] = —7.549257, b[S] = 2.641900

b[6] = 1.000000
al0] = 1.676221 b[0] = 2.388134, b[1] = 2.671119
a[l] = 0.604673 b[2] = 1.697904, b[3] = —5.839285 674.766146
a[2] = 1.000000 b[4] = 1.711065, b[3] = —0.860436

b[6] = 1.000000
al0] = 1.032913 b[0] = 2.525862, b[1] = 2.927879
all] = 2.533571 b[2] = 2.412098, b[3] = —3.094684 674.765766
af2] = 1.000000 b[4] = —4.119134, b[5] = 1.711428

b[6] = 1.000000
al0] = 3.017028 b[0] = 3.715995, B[1] = 4.095051
all] = 0.158394 b[2] = 2.274334, b[3] = —10.924301 674.767408
af2] = 1.000000 b[4] = 5.284974, b[5] = —1.455475

b[6] = 1.000000
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Table 7
Statistical properties of natural frequency for differents boundary conditions (1089 samples)
Statistics Boundary conditions
Simply supported Clamped-free Clamped—clamped Clamped supported
Mean 672.4186337 672.0966348 674.762564 673.1879431
Standard deviation 0.000767083 0.002587103 0.0046755 0.006558834
Coefficient of variation  1.14078E—06 3.8493E—06 6.9291E—06 9.74295E—-06

(4) The intricate connection of the subject of this study with the inverse problems should be mentioned.
As Gladwell (1996) stresses, “classical direct problems have involved the analysis and derivation of the
behavior of the system (e.g. forced response, natural frequencies, current flow, stresses, etc.) from its
properties such as density or mass, conductivity, elastic constant, crack lengths, etc. Inverse problem are
concerned with the determination or estimation of such properties from behavior.” It turns out that al-
though each of the beams has different boundary condition, and, moreover, each of them has different E(&)
these beams have the same frequency. Two vibrating system which have the same natural frequencies are
called to be isospectral. In our particular case, beams of different boundary conditions share the first natural
frequency. Gottlieb (1991), Driscoll (1997) and others have constructed examples of isospectral structures.
In particular, Gottlieb (1991) (consult also with Gottlieb, 1992 and Gottlieb and Mc Manus, 1998) showed
that clamped inhomogeneous circular plates have the same vibration spectrum as their homogeneous
counterparts. In our cases, the second and other frequencies do not coincide. For example, the second
natural frequency squared of the simply supported beam is 10881.18b 1/(AL*), while the clamped—clamped
beam has a second natural frequency squared 5607.68 1/(AL*). Clamped-free and clamped-supported
beams second natural frequencies squared are respectively 42727.97 I/(AL*) and 8013.24 /(AL*). These
values are obtained by the finite element method. Difference between the present work and those associated
with the inverse vibration problem lies in our desire of obtaining closed-form solutions to find any beam
that has a polynomial mode shape.

(5) The expressions of the squared fundamental frequency depend solely upon two coefficients «,, and
b,.+4. If by any procedure these coefficients may be made at will of the designer, one can have a beam that
has a pre-selected fundamental natural frequency so that the unwanted resonance condition can be avoided.
Whereas we are unaware of a procedure with such a derivable feature at present, its possible development in
the future cannot be a priori ruled out.

(6) If the coefficients a,, and b,,,4 are deterministic but the remaining coeflicients are random, the natural
fundamental frequency squared is a deterministic quantity. In complex structures that must be analyzed by
approximate methods this remarkable phenomenon could be validated if the coefficient of variation of the
output quantity turns out to be much smaller than its counterparts for the input parameters.
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Appendix A. Beam clamped at both ends (m < 3)
A.1. Clamped—clamped beam with uniform material density (m = 0)

In this case, the expressions for E(£) and p(¢) read

4

PO =a,  E@)=) bl (A1)

By substituting the latter expressions in Eq. (3), we obtain

—242 (i+1) ,+15+122 l—1b:+1zz (i+2) ,+2é+242b:'
- 482(1’ + )b &+ 4821‘[9,-5" —kL'ay (& =28 + &) =0. (A.2)
=0 =1
Eq. (A.2) has to be satisfied for any . This requirement yields

24(by — by) +4b, =0, (A.3)

72(by — by) + 12b; = 0, (A.4)

144(b; — b3) + 24by — kL*ay = 0, (A.5)

240b; — 240b4 + 2L*kay = 0, (A.6)

—kL4a0 + 360[)4 = 0 (A7)

To satisfy the compatibility equations, b;, where i = {0, 1,2, 3}, has to be

by = —2by, (A.8)
b

by =—, (A.9)
3
2

b = ﬁ, (A.10)
3
1154

by = BT (A.11)

To sum up, if conditions (A.1) are satisfied, where b; are given by Egs. (A.8)—(A.11), then the fundamental
mode shape is expressed by Eq. (6), where the fundamental natural frequency reads
I by
= -— A.12

»® = 360 A aold ( )
It is remarkable that this formula coincides with that for the clamped-clamped beam. A word of caution is
in order: although the expressions of w? coalesce, the rest of b ; coeflicients, namely by, by, b,, and b given in
Egs. (23)—(26) and in Eqgs. (A.8)-(A.11) differ.
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A.2. Clamped—clamped beam with linearly varying material density (m = 1)

In this case, the expressions for E(¢) and p(¢) read

5

p(é) =ay + alia E(é) = Zb,él

i=0

By substituting the latter expressions in Eq. (3), we obtain
4 5 3 5
=24 Ci(i 4+ Db & +12) i — DhE +12) (i + 1)(i + 2)binl + 24 b&!
=1 =2 =0 =0

4 5
— 48 (i + )b & + 48 "ibi& — kL*(ag + a1 ) (& — 28 + &) = 0.
i=0 =

i=1

Eq. (A.14) has to be satisfied for any ¢. This requirement yields
24(by — b1) +4b, =0,
72(by — by) + 1265 =0,
144(b, — b3) 4 24by — kL*ay = 0,
240(bs — by) + 40bs + L* (2kay — ka;) = 0,
360(by — bs) + L*(2ka; — kay) = 0,
—kL*a, + 504bs = 0.

To satisfy the compatibility equations, b;, where i = {0,1,2,3,4}, has to be

by = Tay — 9a; bs.
5(11
by — 2(611 - 21610)
T 15a Y
13(11 + 14610
b=—-7—b
2 30(11 5y
- 376!1 + 84610
T 90q, Y
b o 61(1] + 154610
T 180a,
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(A.13)

(A.14)

(A.15)
(A.16)
(A.17)
(A.18)
(A.19)

(A.20)

(A21)

(A.22)

(A.23)

(A.24)

(A.25)

To sum up, if conditions (A.13) are satisfied, where b, are given by Egs. (A.21)-(A.25), then the funda-

mental mode shape is expressed by Eq. (6), where the fundamental natural frequency reads

I b
2=504= — .
@ Aa1L4

(A.26)
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A.3. Clamped—clamped beam with parabolically varying density (m = 2)

In this case, the expressions of E(£) and p(¢) read

6

p&) =a+aé+as, — E(E)=) b
By substituting the latter expressions in Eq. (3), we obtain

—24Z”+1 ,+15+122”_1b5+122 (i+2) z+zf+242b5

—482 i+ )by & +4szlb5 — kL (ag + a1 + @ &) (& - 28 + &) =0

i=0 i=1
Eq. (A.28) has to be satisfied for any &. This requirement yields
24(by — by) +4b, = 0,

72(by — by) +12b5 =0,

144(by — bs) + 24by — kL*ay = 0,

240(by — by) + 40bs + L*(2kag — ka;) = 0,
360(by — bs) + 60b + L*(2ka; — kay — kay) = 0,
504(bs — bg) + L*(2ka, — ka;) = 0,

—kL*a> 4+ 672b¢ = 0.
To satisfy the compatibility equations, b;, where i = {0, 1,2, 3,4, 5}, has to be

da, —
py = 30 =@,
302
_ay — T2a; + 56a
by = 30a; bs,
2(702 + 4611 — 84610)
by = b
’ 45a, ©
by — 55612 + 10461] + 112&0
T 180a; o
by — 137612 + 296&11 + 67200
: 5404, &
219612 + 488611 + 1232610
by = b.

1080a,

(A.27)

(A.28)

(A.29)
(A.30)
(A.31)
(A32)
(A.33)
(A.34)

(A.35)

(A.36)

(A.37)

(A.38)

(A.39)

(A.40)

(A41)

To sum up, if conditions (A.27) are satisfied, where b; are given by Egs. (A.36)—(A.41), then the funda-

mental mode shape is expressed by Eq. (6), where the fundamental natural frequency reads
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I b
P=672- —2 .
@ Aa2L4

A.4. Clamped—clamped beam with cubic density (m = 3)

In this case, the expressions of E(¢) and p(¢) read
7
E@©) =) b, p&) =ay+aé+al +al.
=0
By substituting the latter expressions in Eq. (3), we obtain

6 7 5 7
=24 Ci(i 4+ Db & +12) i = DbE +12) (i + 1)(i + 2)binl + 24> b&!
i=1

i=2 i=0 i=0

6 7
— 48 (i + )b +48) “ibi& — kL' (ay + a1é + @& + a;&) (£ =28 + &) = 0.
i=0 i=1

Eq. (A.44) has to be satisfied for any &. This requirement yields
24(by — b)) +4b, =0,
72(by — by) + 12b3 =0,
144(by — b3) 4 24by — kL*ay = 0,
240(by — by) + 40bs + L*(2kag — ka;) = 0,
360(by — bs) + 60bg + L*(2ka; — kay — ka,) = 0,
504(bs — bg) + 84b; + L*(2ka, — ka; — kaz) = 0,
672(bs — b7) + L*(2kaz — ka,) = 0,
—kL*a3 + 864b; = 0.

To satisfy the compatibility equations, b;, where i = {0, 1,2, 3,4, 5,6}, has to be

9a, — 11
be = ub%
7613
o 72611 — 90612 — as
b5 - Tbﬂ
506!3 + 902 — 648&1 + 504610
b4 = b7a

210613

~ 305a3 + 504a, + 288a; — 60484y b

bs 1260a; 7

3435

(A.42)

(A.43)

(A.44)

(A.45)
(A.46)
(A.47)
(A48)
(A.49)
(A.50)
(A.51)

(A.52)

(A.53)

(A.54)

(A.55)

(A.56)
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b 85(13 + 165612 + 31261] + 336610
2T 420a; b,

y _ 1225a; +2466a; + 5328ay + 12096ay
! 7560a; b,

970as + 1971a, 4 4392a, + 110884, by.
7560a3

0 =

(A.57)

(A.58)

(A.59)

To sum up, if conditions (A.43) are satisfied, where b; are given by Eqs. (A.53)—(A.59), then the funda-

mental mode shape is expressed by Eq. (6), where the fundamental natural frequency reads

1 by

® =864~
A CZ3L4

Appendix B. Beam clamped at one end and simply supported at the other (m > 3) (CS)
B.1. CS beam with uniform density (m =0)

In this case, the expressions for E(£) and p(¢) read
p(&) = ao, E(¢) = Zbifi-
By substituting the latter expressions in Eq. (3), we obtain

7242 (i+1) ,+1§+122 171b5+122 (i + 2)b; 2 +24Zbé

i=0
- 482(1’ + Dbt & + 482ib,-5i — kL*ag (28 = 58 +38%) =0
i=0 i=1
Eq. (B.2) has to be satisfied for any £. This requirement yields
48by — 60b; + 125, =0,
144b, — 180b, + 36b3 = 0,
288b, — 360b3 + 72by — 3kL*ay = 0,
480b; — 600b, + L*(Skay — 3ka;) = 0,
—kL*ay + 360b, = 0.

To satisfy the compatibility equations, b;, where i = {0, 1,2, 3}, has to be

(A.60)

(B.8)
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3b

bzzz—gi, (B.9)
35b,

b= (B.10)
163b,

b=—Doe - (B.11)

To sum up, if conditions (B.1) are satisfied, where b; are given by Egs. (B.8)—(B.11), then the fundamental
mode shape is expressed by Eq. (6), where the fundamental natural frequency reads

I b
2 4
= —- . B.12
w 360 0 7 ( )

We again the identity of this formula with it counterparts for clamped-clamped beam in Eq. (20) and for
the cantilever beam in Eq. (A.12). Again, this coincidence occurs if both beams share the same coefficients
by and ay. Yet we see from the very construction process of the closed-form solutions that the beams are not
identical in rest of b; coefficients.

B.2. CS beam with linearly varying density (m = 1)

In this case, the expressions for E(&) and p(¢) read
pl&) =ay+aé,  E() =) b (B.13)
By substituting the latter expressions in Eq. (3), we obtain

4 5 3 5
=24 Ci(i+ Db & +12) i = DhE +12) (i + 1)(i + 2)bial + 24> b&!
i=1

=2 =0 =0
—%550+Uhﬂf+%§3h€—kﬁwm+m@@5—55+2€):0 (B.14)
i=0 i=1
Eq. (B.14) has to be satisfied for any £. This requirement yields

48by — 60b; + 12b, = 0, (B.15)
1445, — 1806, + 36b3 =0, (B.16)
288b, — 360b5 + 72by — 3kL*ay = 0, (B.17)
480b5 — 600b, + 120b5 + L*(5kay — 3ka;) = 0, (B.18)
720b4 — 900bs + L*(Ska, — 2kay) = 0, (B.19)
—kL*a; 4 504bs = 0. (B.20)

To satisfy the compatibility equations, b;, where i = {0, 1,2, 3,4}, has to be

o 28(10 — 4501

by = 2220 — 01 B.21
4 20a, 5 (B.21)
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by = 7“’%54:0“0)135, (B.22)
by = 215%%1168”0175, (B.23)
by = 1047%0;%0“%, (B.24)
p, 162501+ 1304ay) (.25

5120a,

To sum up, if conditions (B.13) are satisfied, where b, are given by Egs. (B.21)—(B.25), then the fundamental
mode shape is expressed by Eq. (6), where the fundamental natural frequency reads

I bs

w? = 504A oLt (B.26)
B.3. CS beam with parabolically varying density (m = 2)
In this case, the expressions for E(£) and p(¢) read
E(¢) = Zéjbif’} p(&) = ap+ ar1é + o (B.27)
i=0
By substituting the latter expressions in Eq. (3), we obtain
_24Zz+1 ,+1§+1zzl_1b:+1zz (i+2) l+2é+242bé
—482 (i + Dby & +4821b§ — kL (ay + aré + ax&?) (38 - 58 +2¢") = 0. (B.28)
=0 i=1
Eq. (B.28) has to be satisfied for any &. This requirement yields
48by — 60D, + 120, =0, (B.29)
144b, — 1800, + 36b3 = 0, (B.30)
288b, — 360b3 + 72by — 3kL*ay = 0, (B.31)
480b; — 600b, + 120bs + L*(5kag — 3ka,) = 0, (B.32)
720b4 — 90065 + 180bg + L*(Ska, — 2kay — 3ka,) = 0, (B.33)
1008bs — 1260bg + L*(5kay — 2ka;) = 0, (B.34)
—kL*a; + 672bs = 0. (B.35)

To satisfy the compatibility equations, b;, where i = {0, 1,2, 3,4, 5}, has to be
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bs = 716“‘12;225“2 be, (B.36)
p, 130 275(())521 +MSay, (B.37)
p, 4350+ 191620622— 44800, (B.38)
p, _ 2200 + 3;118: +2688a, (B.39)
p, 93050 + 1165735620a;2+ 313600y, (B.40)
p, 380672 + 70000a, + 146048ay , (BA1)

61440a,

To sum up, if conditions (B.27) are satisfied, where b; are given by Eqs. (B.36)—(B.41), then the fundamental
mode shape is expressed by Eq. (6), where the fundamental natural frequency reads

I b
26725 . B.42
o =67 YPNE ( )

B.4. CS beam with cubically varying density (m = 3)

In this case, the expressions for E(¢) and p(&) read
7
EQ) =308, p&)=atai+ad +ad. (B.43)
=0
By substituting the latter expressions in Eq. (3), we obtain
6 . 7 ‘ 5 . 7
=24 Ci(i+ Db & +12) i = DhE +12) (i + 1)(i + 2)bial + 24 bi&!
i1 =2 =0 =0
— 48 (i + )b & +48) "ibi& — kL*(ag + a1 & + @& + a3 &) (38 - 58 +2&%) = 0. (B.44)
=0 -

i=1

Eq. (B.44) has to be satisfied for any &. This requirement yields

48by — 60b; + 12b, = 0, (B.45)
144b; — 180b, + 36b3 = 0, (B.46)
288b, — 360b; + 72by — 3kL*ay = 0, (B.47)
480b5 — 600by + 120bs + L*(Skay — 3kay) = 0, (B.48)

720b, — 900bs + 180bg + L*(Ska; — 2kay — 3kay) = 0, (B.49)
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1008bs — 1260b¢ + 252b, + L*(Skay — 2ka;, — 3kas) = 0, (B.50)
1344b — 1680b; + L*(Skas — 2ka,) = 0, (B.51)
—kL*as + 864b; = 0. (B.52)
To satisfy the compatibility equations, b;, where i = {0,1,2,3,4,5,6}, has to be
36&2 — 55&}
bg=—F—b B.53
¥ 28a; (B.53)
- 3(64611 — 10002 — 5613)
bs = 124, by, (B.54)
- 725613 — 156612 — 8640(11 + 537600
by = 3240a; by, (B.55)
3925a3 + 5220a, + 1344a; — 53760qy
by = b B.56
’ 8960a; " (B:56)
3(5575a3 + 8908a, + 13760a; + 10752a)
by = b B.57
? 35840a; " (B:57)
67925a; + 112740a, + 2010244, + 376320a,
- B.
b 1433604, br, (B.58)
by = 272725a3 + 456804a; + 840000a, + 17525764y by, (B.59)

573440a;

To sum up, if conditions (B.43) are satisfied, where b, are given by Egs. (B.53)—(B.59), then the fundamental
mode shape is expressed by Eq. (6), where the fundamental natural frequency reads

I b
2 =864~ —. B.
o™ = 86 Aol (B.60)
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